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Abstract—We derive upper bounds on the maximum achievable rate
of low-density parity-check (LDPC) codes used over the binary era-
sure channel (BEC) under Gallager’s decoding algorithm, given their
right-degree distribution. We demonstrate the bounds on the ensemble of
right-regular LDPC codes and compare them with an explicit left-degree
distribution constructed from the given right degree.

Index Terms—Binary erasure channel (BEC), iterative decoding, low-
density parity-check (LDPC) codes.

I. INTRODUCTION

Low-density parity-check (LDPC) codes were invented by Gallager
in 1963 [1], but were relatively ignored for three decades. Their re-
vival started when they were rediscovered in the mid 1990s, and since
then they have attracted a great deal of interest. The binary erasure
channel (BEC), presented by Elias [2] already in 1955, has lately be-
come increasingly popular, as it may be used to model communica-
tion via packet-loss networks, such as the Internet. Luby et al. [3] sug-
gested an iterative algorithm for decoding LDPC codes over the BEC
and showed that the proposed scheme can approach channel capacity
arbitrarily close. This algorithm is Gallager’s soft-decoding algorithm
[1] when applied to the BEC.

Throughout the correspondence, we shall consider irregular LDPC
codes with left, right edge-degree distribution polynomials
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respectively, where �i(�i) is the fraction of edges in the bipartite graph
that have left (right) degree i. The same code profile may alternatively
be described in terms of node-degree distribution (the degree distribu-
tion from the node perspective). The left, right node-degree distribution
polynomials are
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respectively, where ~�i(~�i) is the fraction of left (right) nodes in the
bipartite graph that have degree i.

We denote the number of left (variable) nodes by n and the number
of right (check) nodes by n � k. The designed rate of the code is
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We shall also consider a BEC with the input X taking values from
f0; 1g and the output Y taking values from f0; "; 1g. Let the loss frac-
tion (probability of erasure) be �, thus,

PfY = " j X = 0g = PfY = " j X = 1g = �

and PfY = Xg = 1 � �.
The LDPC code is transmitted over the BEC, and is iteratively de-

coded using Gallager’s soft-decoding message-passing algorithm, also
named belief propagation (which for the BEC assumes a particularly
simple form described, for instance, in [4], [3]). It has been shown [3]
that the belief-propagation decoding scheme can correct a � fraction of
erasures (losses) in the channel if and only if

��(1� �(1� x)) < x 8 x 2 (0; 1]: (2)

This inequality shall henceforth be called the successful decoding con-
dition.
This correspondence is organized as follows. In Section II, we derive

a measure for how close the rate of an LDPC code is to the capacity
of the worst BEC over which the code is successfully decodable, given
some right-degree distribution. In Section III, we use this measure to
derive the zero-order bound on the maximal fraction of erasures � that
can be corrected by a rate R LDPC, with a given �(x). This bound
has already been shown [5, Theorem 1]. In Section IV, we derive the
first-order bound which always improves the zero-order bound. In Sec-
tion V, we derive the second-order bound, which is sometimes better
than the first-order bound. In Section VI, we demonstrate the bounds on
the ensemble of right-regular codes, and compare them to the achiev-
able rate of an actual code sequence. Section VII concludes the corre-
spondence.

II. HOW CLOSE IS THE CODE RATE TO CAPACITY?

In this section, we show the relation between the fulfillment of the
successful decoding condition and a limit on the code rate. We start
with the following lemma.

Lemma 1: For any LDPC code characterized by degree distributions
�(x) and �(x) and rate

R = 1�
�

�

given a BEC with erasure probability �, and having the function f(x)
defined such that

f(x) =
1� ��1(1� x)

�
� �(x): (3)

Then

1

1� C
�

1

1�R
= ar

1

0

f(x)dx (4)

where ��1(�) is the inverse function of �(�), ar 1= � is the average
degree of right (check) nodes, and C 1 � � is the capacity of the
channel.

Proof: Note that since �(x) and �(x) are both polynomials with
nonnegative coefficients that sum to one (and they are not constant),
they are strictly monotonically increasing functions of x for 0 � x �
1. Hence, they are both invertible over the above range [3]. In addition,
they both are equal to 0 for x = 0, and to 1 for x = 1.
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Fig. 1. Zero-order bound.

We define z ��1(1 � x) or, equivalently, �(z) = 1 � x. Thus,
d�(z)
dz

= � dx

dz
. We get

1

0

1� �
�1(1� x)dx =1 +

0

1

z
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=1 + [z�(z)]01 �
0

1

�(z)dz

= �: (5)

Integrating (3) over [0; 1] and substituting (5) and (1) results in
1

0

f(x)dx =
�

�
� � = �

1

1� C
�

1

1�R
(6)

thus proving the lemma.

Implication: From this lemma, we can derive a measure of how
close the rate of the code is to the capacity of the worst BEC for which
the code is successfully decodable. This measure is in terms of the
average degree of check (right) nodes ar and of the function f(x) we
have defined here. Note that defining a new variable x 1� �(1� x̂)
and substituting it into the successful decoding condition, �(1��(1�
x̂)) < x̂

�
, yields

�(x) <
1� ��1(1� x)

�
; 8 0 < x � 1: (7)

First we see from (7) that for a successfully decodable code, f(x) is
positive over the range (0; 1], verifying that the rate must be less than
the capacity. But in addition, any upper bound on 1

0
f(x)dx provides

an upper bound on the maximal fraction of erasures that can be cor-
rected, and we see that the closer the nonnegative integral 1

0
f(x)dx

is to zero, the closer the rate R is to the capacity C .
Consider the following design problem. We wish to design a code

so as to maximize its rate R subject to the requirement that it should

be successfully decodable for a BEC with erasure probability �. Thus,
given the right-degree distribution �(x), it is desired to find a left-de-
gree distribution �(x) so that the integral of f(x) over the range [0; 1]
is minimized, subject to (7). The smaller this integral is, the higher the
achievable code rate is. In the sequel, we shall see that these constraints
on �(x) limit the maximum achievable rate away from the channel ca-
pacity even farther than has been stated thus far.

III. THE ZERO-ORDER BOUND

Theorem 1 (The Zero-order Bound) [5, Theorem 1]: The rate of an
LDPC code with a fixed right edge-degree distribution �(�), which is
successfully decodable under iterative decoding over a BEC with an
erasure probability �, never exceeds the following upper bounds.

1) The simple bound

R � 1�
�

1� (1� �)a
: (8)

2) The tighter bound

R � 1�
�

1� ~�(1� �)
(9)

where ~�(�) is the corresponding right node-degree distribution.

In general, the idea behind the zero-order bound is based on the fact
that the expression 1

�
(1���1(1�x)) is greater than 1 for some interval

near x = 1, while �(x) � 1. Hence, calculating the area of this specific
part that exceeds 1 renders a value by which 1

1�R
is bounded away

from 1
1�C

. In Fig. 1, we illustrate this value by the painted region. The
complete proof of these bounds is deferred to Appendix A.
We note that Burshtein et al. [6] presented an upper bound on the

achievable rate of LDPC codes over a general binary-input symmetric-
output channel under maximum-likelihood (ML) decoding. Let X 2
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f0; 1g denote the channel input, let Y denote the channel output, and
let

�(y) P (Y = y j X = 1) = P (Y = �y j X = 0):

They defined a crossover probability � of the channel (the probability
of estimation error in optimal decoding)

�
1

2

1

�1

min(�(y); �(�y))dy

and proved that for a right-regular code with right node-degree d =
D + 1, the rate is bounded as follows:

R � 1�
1� C

h(�d)

where �d = 1

2
(1� (1� 2�)d) and h(�) is the binary entropy function.

Applying this bound to the specific case of BECwith loss fraction �, we
substitute �=2 for the crossover probability � and thus have �d = 1

2
(1�

(1� �)d), hence, setting ~�(x) = xd in the zero-order bound (9) yields
R � 1� 1�C

2�
. Recalling thath(x) � 2x in [0; 1

2
], the zero-order bound

is tighter than the one stated in [6]. This is not surprising as it considers
iterative decoding and not ML decoding and as it only considers the
special case of transmitting over a BEC. Recently, it has been shown
in [7] that the zero-order bound also applies to ML decoding over the
BEC and is valid for every particular code with the given (right) profile.
This result does not necessarily apply to the new bounds we present in
Sections IV and V.

IV. THE FIRST-ORDER BOUND

The zero-order bound is actually not new. Shokrollahi proved a com-
pletely equivalent inequality [5, Theorem 1]. Our approach differs how-
ever from the one given in that paper, and it enables us to tighten the
bound. We start by asserting a few auxiliary lemmas.

Lemma 2: Let �(�) be a right-degree distribution, let ��1(�) be its
inverse function, and let

y(x)
1� ��1(1� x)

�
: (10)

Then both y(x) and dy

dx
are monotonically increasing.

Proof: Defining ŷ �y, we write

x = 1� �(1� ŷ) = 1�
i�2

�i(1� ŷ)i�1

and differentiate it with respect to x

1 =
dŷ

dx
�
i�2

(i� 1)�i(1� ŷ)i�2:

Recalling that �i are all nonnegative and that they sum to 1 (there-
fore, at least one of them is strictly positive) we conclude that dy

dx
is

strictly positive over the range (0; 1). Differentiating the expression
once again, we obtain

0 =
d2ŷ

dx2
�
i�2

(i� 1)�i(1� ŷ)i�2

�
dŷ

dx

2

�
i�3

(i� 1)(i� 2)�i(1� ŷ)i�3:

Having proved that dŷ
dx

is strictly positive, we conclude that d y

dx
is also

strictly positive over (0; 1).

Lemma 3: Let y(x) be defined as in Lemma 2 with 0 < � < 1.
Suppose that dy

dx x=0
< 1. Then there exists exactly one tangent to

y that passes through the point (1; 1), and this tangent touches y(x)
within the range (0; 1).

Proof: We recall that y(0) = 0 and that y(1) > 1. Given that it
is convex [ (Lemma 2) and that its slope is less than 1 at x = 0 it is
easy to see that there exists a unique tangent to y(x) that passes through
(1; 1), and that the tangent point lies within the relevant interval (0; 1).

Notes pertaining to finding the tangent point in Lemma 3 can be
found in Appendix B.
Lemma 2 and Lemma 3 allow us to state a tighter bound on the

achievable rate.

Theorem 2 (The First-Order Bound): For any LDPC code success-
fully decodable under iterative decoding over a BECwith erasure prob-
ability �, if the first derivative of y(x) (as defined in Lemma 2) at x = 0
is less than 1, then the code rate R is bounded as follows.

1) The simple bound

R � 1�
�

1� (1� �ya)a + �ar
(1�y )(1�x )

2

: (11)

2) The tighter bound

R � 1�
�

1� ~�(1� �ya) + �ar
(1�y )(1�x )

2

(12)

where (xa; ya) is the tangent point defined in Lemma 3, and ar
is the average right degree 1= �.

Proof: We denote by a(x) the tangent line defined in Lemma 3

a(x) =
1� ya
1� xa

x +
ya � xa
1� xa

:

We recall that �(x) is convex [ for x 2 (0; 1). In addition, �(1) = 1
and �(xa) < ya. We conclude that �(x) < a(x) for x 2 [xa; 1).
Recalling (3), we obtain

f(x) �
1� ��1(1� x)

�
� a(x); 8 xa � x � 1:

Thus, we have

1

0

f(x)dx

�
1

x

1� ��1(1� x)

�
�

(1� ya)x+ (ya � xa)

1� xa
dx

(a)
= (1� xa)ya + ~�(��1(1� xa))

�

�
�

(1� xa)(1 + ya)

2

=
1

�
~�(1� �ya) ��

1

2
(1� xa)(1� ya)

where (a) follows by (20) in Appendix A.
The tighter bound (12) now follows from Lemma 1 after rewriting

(4) as

R = 1�
1

1
�
� ar

1

0
f(x)dx

(13)

whereas the simple bound (11) then follows from (21) in Appendix A.

Note that the above expressions hold for any (xa; ya) on the curve
y(x). Thus, it is easy to see that the zero-order bound is a special case
of the first-order bound, when ya = 1. However, (xa; ya) is chosen
to be the above mentioned tangent point in order to obtain the tightest
bound on R. It is easy to see that this bound necessarily improves on
the zero-order bound.
The painted area in Fig. 2 denotes the difference in our bound to
1

0
f(x)dx between the zero-order and the first-order bounds.
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Fig. 2. First-order bound.

Note: In the last theorem, we excluded the case in which the first
derivative of y(x) is at least 1. In this case, simply choosing �(x) = x

meets the condition for successful decoding (7). As this choice maxi-
mizes � given the fixed right-degree distribution �(x), this yields the
highest code rate possible, which renders in this case

R = 1�
�

�
= 1� 2 �:

From a design point of view this is not an interesting case, and the con-
sequent code will tolerate a higher erasure probability than the consid-
ered one �. Practically, it means that �(x) has been chosen ineffectively
as it is not suited to the relatively low value of �, hence, it could have
been chosen such that the achievable rate would have been higher and
closer to the capacity. This can also be seen as follows. It is easy to
verify that

dy

dx
x=0

=
1

� � �0(1)
:

On the other hand, the stability condition [8], which is a necessary con-
dition for successful iterative decoding states that �0(0)�0(1) < 1

�

should hold. It is also known [5], [8] that for any sequence of ca-
pacity-achieving degree distributions over the BEC, the stability con-
dition becomes tight. Thus, as �0(0) < 1 for these capacity-achieving
ensembles dy

dx x=0
! �0(0) < 1:

V. THE SECOND-ORDER BOUND

Before stating the second-order bound, we need the following
lemma.

Lemma 4: Let �(x), �(x) be the degree distributions of an LDPC
code used over a BEC. Let a d

dx
y(x)

x=0
(where y(x) is defined

above). Suppose that a < 1 and that the code is successfully decodable
for a BEC with erasure probability �. Let b(x) ax+(1�a)x2. Then

�(x) � b(x) 8 x 2 [0; 1]:

Proof: We prove the lemma by contradiction. Let us assume that
the statement of the lemma does not hold. Thus, there exists some point
x0 2 (0; 1) such that

�(x0) > b(x0):

We recall that �(0) = b(0) = 0 and that �(1) = b(1) = 1. Hence,
there exist x1 2 (0; x0) and x2 2 (x0; 1) such that

�
0(x1) > b

0(x1); �
0(x2) < b

0(x2): (14)

The derivative of the parabola b(x) is the straight line

b
0(x) = a+ 2(1� a)x:

As �0(0) � a (the stability condition, [5], [8]), we have that

�
0(0) � b

0(0): (15)

Recalling that all the derivatives of �(x) are positive, monotonically
increasing, and convex [ in (0; 1], the following must hold:

�
0(x1)

(a)
= �

0(�x2)
(b)

� ��
0(x2) + (1� �)�0(0)

(c)

� �b
0(x2) + (1� �)b0(0)

(d)
= b

0(�x2) = b
0(x1)

where in (a) we defined � x

x
< 1, (b) follows by the convexity

of �0(x), (c) follows (14) and (15), and (d) holds as b0(x) is a straight
line. This is impossible as it contradicts (14).

Theorem 3 (The Second-Order Bound): Consider an LDPC code
with left-, right-degree distribution �(x), �(x), respectively, success-
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Fig. 3. Second-order bound.

fully decodable under iterative decoding over a BECwith erasure prob-
ability �. Let b(x) be the parabola defined in Lemma 4, and let xb be
the minimum value of x̂b such that b(x) � y(x) 8 x 2 [x̂b; 1], where
y(x) is defined in Lemma 2. Let a(x) be the tangent line defined in
Lemma 3. We define c(x) to be the convex envelope of a(x) in the
interval [xa; 1], and the parabola b(x) in the interval [xb; 1]. Suppose
further that dy

dx x=0
< 1. Then

R � 1�
�

1� �ar
1

�
fb(x)

(16)

where fb(x) y(x) � c(x), � min(xa; xb), and ar denotes the
average right degree 1= �.

Note: The existence of an interval [xb; 1] in which b(x) � y(x) is
guaranteed as b(1) < y(1).

The proof of the theorem follows from (13), recalling that �(x) is a
convex function that satisfies both �(x) � b(x) and �(x) � a(x), and
using the definition of a convex envelope (e.g., [9, p. 125]).

The painted area in Fig. 3 denotes the difference in our bound to
1

0
f(x)dx between the first-order and the second-order bounds.
It is not guaranteed that the second-order bound improves on the

first-order bound. This depends onwhether the parabola b(x) is in some
interval below a(x). Otherwise, c(x) = a(x) and the two bounds co-
incide. As we demonstrate in Section VI, both cases are possible.

VI. EXAMPLES: RIGHT-REGULAR CODES

We examined the behavior of these bounds with right-regular codes,
and compared them to the rate achieved by some specific code profiles.
The code profile we consider is a variant of the “right-regular sequence”
introduced in [5], [10].

For a given right degree d = D+1 (i.e., right generator polynomial
�(x) = xD) and erasure probability � we set the left generator poly-
nomial to

�(x) =
i�I

aix
i + bxI+1 (17)

where ai are the first I Taylor coefficients of the function
1

�
(1 � (1 � x)1=D) (which are all positive), I is the highest in-

teger such that I
i=1 ai � 1, and b is set such that �(1) = 1. The rate

R can then be calculated by

R = 1�
�

�
:

Since (2) can be written as �(x) < 1

�
(1���1(1�x)) 8 x 2 (0; 1],

it can easily be seen that the above sequence meets this requirement
by definition. It has been shown that the designed rate of this sequence
approaches the capacity 1 � � for D ! 1.
Fig. 4 shows the maximum achievable rate of right-regular codes

according to each of the bounds versus the right degree, for two values
of the fraction loss. The upper bounds are also compared with the rate
achieved by the code sequence defined in (17). The code sequence in
(17) produced higher rates than the code sequence in [5].
The figure demonstrates that while all bounds approach the channel

capacity C = 1 � � for D ! 1, the first-order bound is below
the zero-order bound for all right degrees. We can also see that the
second-order bound improves on the first-order bound only for small
values ofD (for larger values ofD, where the second-order bound does
not improve, we omitted it from the figure). One may figure out that the
improvement of our new bounds on the previously known bound (the
zero-order bound) is substantial for low right degrees, exactly where
achievable rates are farthest from channel capacity, and that they are
very close to the achievable rate of the code sequence defined in (17).
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Fig. 4. Bounds on LDPC codes that are right regular, for two values of loss fraction �, compared to the rates achieved by the code profiles defined in (17).

VII. CONCLUSION

We derived improved upper bounds on the rate of LDPC codes used
over the BEC under iterative decoding, for which reliable communica-
tion is achievable, given their right-degree distribution.

While our novel bounds are not provably tight, they are practically
tight. This was demonstrated for several right-regular degree profiles,
by showing that they are close to the rate of some actual left-degree
profile.
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APPENDIX A
PROOF OF THEOREM 1

The node-perspective left-, right-degree distribution is the set f~�ig,
f~�ig, respectively, where

~�i =
�i=i

�
; ~�i =

�i=i

�
(18)

or by means of the polynomials

~�(x) =

x

0
�(x̂)dx̂

�
; ~�(x) =

x

0
�(x̂)dx̂

�
: (19)

Claim: For any 0 < � < 1 and � = 1�� (1��)
�

1

�

1� ��1(1� x)

�
dx = (1��)�+ ~�(��1(1��)) �

�

�
: (20)

Proof: Let z(x) = ��1(1� x), thus, z(1) = 0 and dx
dz

= � d�(z)
dz

.
We obtain

1

�

1� ��1(1� x)dx =1� � +
0

� (1��)

z
d�(z)

dz
dz

=1� � + z�(z)j0� (1��)

+
� (1��)

0

�(z)dz

(a)
= (1� �)(1� ��1(1� �))

+ ~�(��1(1� �)) � �

where in (a) we utilize (19).

We now prove the zero-order bound, starting with the tighter one (9)
then proceeding to (8).

Proof: (of Theorem 1) We start with (3) and note that �(x) � 1.
Thus,

f(x) �
1� ��1(1� x)

�
� 1

in which the right-hand side is nonnegative for x � 1� �(1� �). As
f(x) is nonnegative over the whole range [0; 1], we have

1

0

f(x)dx �
1

1��(1��)

1� ��1(1� x)

�
� 1 dx

(a)
=

1

�
�(1� �)(1� (1� �)) + ~�(1� �) �

� �(1� �)

=
1

�
~�(1� �) � �

where (a) follows by (20). Now (9) follows by (4)
To prove the weaker bound (8) we recall [5] that since ~�i form a

probability distribution, we have

~�(x) =
i

~�ix
i � x

i~�
= x

1= �
= xa ; (21)

which leads to the desired bound.

APPENDIX B
FINDING THE TANGENT POINT OF LEMMA 3

In this appendix, we show how the tangent point in Theorem 2 can
be found by solving a polynomial equation. Presenting (10) as x =

1 � �(1 � �y), the tangent point (xa; ya) is determined by the two
equations

xa =1� �(1� �ya)
1� xa
1� ya

= ��0(1� �ya)

which, by substituting u = 1� �ya, can be presented as

�(u) = (� � 1 + u) � �0(u) (22)

and

xa =1� �(u)

ya =
1� u

�
: (23)

In order to calculate the tangent point (xa; ya), one first solves (22),
which is a polynomial equation in u, and finds the unique solution over
(1��; 1). The existence of this unique solution has already been proved
in Lemma 3. The tangent point is then calculated using (23).
In the particular case of a right-regular code discussed in Section VI,

where �(x) = xD andD+1 is the right-degree, there exists a closed-
form solution to the tangent point, namely

xa =1�
(1� �)D

D � 1

D

ya =
1

�
1�

(1� �)D

D � 1
:
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